Virginia Tech® home

Hongxiao Zhu

Associate Professor

 

Education

  • Ph.D. – Statistics – Rice University, Houston TX – Thesis: Functional Data Classification and Covariance Estimation (PDF) – May 2009
  • M.S. – Mathematics – University of Arkansas at Little Rock, Little Rock AR – May 2004
  • B.S. – Finance – Wuhan University, Wuhan, P.R. China – July 2002

Awards & Honors

  • Travel Award, The Sixth International Workshop on Statistical Analysis of Neuronal Data (SAND6), 2012
  • Travel Award, CBMS Regional Conference - Bayesian Nonparametric Statistical
    Methods, 2010
  • The SBSS Student Paper Competition and Travel Award, ASA, 2008
  • Graduate Fellowship and Teaching/Research Assistantship, Rice University, 2004 – 2008
  • Outstanding Achievement by Graduate Student, Univ. of Arkansas, Little Rock, 2004
  • Graduate Assistantship, University of Arkansas, Little Rock, 2002 – 2004

Professional Memberships

  • Institute of Mathematical Statistics
  • American Statistical Association, Eastern North American Region (ENAR)
  • The International Biometric Society

 

 

  • Advanced Topics in Regression (STAT6514)
  • Advanced Topics in Statistical Inference (STAT6114)
  • Advanced Topics in Bayesian Statistics (STAT6474)
  • Methods of Statistical Computing (STAT4004)
  • Introduction to Statistical Computing (DAAS) (STAT5054)

 

 

  • Bayesian Methods
  • Functional Data Analysis
  • Statistical Machine Learning
  • Applications in Medicine, Neuroscience, Engineering, Bioinformatics, Genetics, and Finance

 

  • Huo, S., Morris, J.S. and Zhu, H. (2022) Ultra-fast approximate inference using variational functional mixed models, Journal of Computational and Graphical Statistics, doi:10.1080/10618600.2022.2107532.
  • Wu, X. and Zhu, H. (2022) Association testing for binary trees|a Markov branching process approach, Statistics in Medicine, doi: 10.1002/sim.9370.
  • Tanveer, M. H., Thomas, A., Ahmed, W. and Zhu, H. (2021) Estimate the unknown environment with biosonar echoes–a simulation study Sensors 21(12): 4186. doi: 10.3390/s21124186.
  • Tanveer, M. H., Wu, X., Thomas, A., Ming, C., Mueller, R., Tokekar, P. and Zhu, H. (2020) A simulation framework for bioinspired sonar sensing with Unmanned Aerial Vehicles. PLOS ONE 15(11): e0241443. doi: 10.1371/journal.pone.0241443.
  • Tang, M., Hasan, M.S., Zhang, L., Zhu, H., and Wu, X. (2019) vi-HMM: A novel HMM-based method for sequence variant identification in short read data. Human Genomics. 13, 9. doi: 10.1186/s40246-019-0194-6.
  • Zhu, H., Caspers, P., Morris, J. S., Wu, X. and Mueller, R. (2018). A unified analysis of structured sonar-terrain data using Bayesian functional mixed models, Technometrics, 60(1):112–123, doi:10.1080/00401706.2016.1274681.
  • Zhu, H., Morris, J. S., Wei, F. and Cox, D. D. (2017). Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study, Computational Statistics and Data Analysis, 111 88–101.
  • Zhu, H., Strawn, N. and Dunson, D. B. (2016). Bayesian graphical models for multivariate functional data, Journal of Machine Learning Research, 17(204) 1–27.
  • Zhang, L., Baladandayuthapani, V., Zhu, H, Baggerly, K. A., Majewski, T., Czerniak, B. A. and Morris, J. S. (2016). Functional CAR models for large spatially correlated functional datasets, Journal of the American Statistical Association–Theory and Methods, 111(514) 772–786.
  • Yang, J., Zhu, H., Choi, T. and Cox, D. D. (2016). Smoothing and mean-covariance estimation of functional data with a Bayesian hierarchical model, Bayesian Analysis 11(3) 649–670.
  • Wu, X., Sun, M., Zhu, H. and Xie, H. (2015) Nonparametric Bayesian clustering to detect bipolar methylated genomic loci. BMC Bioinformatics 16, 11. doi: 10.1186/s12859-014-0439-2.
  • Zhu, H., Yao, F. and Zhang, H. H. (2014). Structured functional additive regression in reproducing kernel Hilbert spaces, Journal of the Royal Statistical Society: Series B 76 581–603.
  • Zhu, H., Brown, P. J. and Morris, J. S. (2012). Robust classification of functional and quantitative image data using functional mixed models, Biometrics 68(4) 1260–1268.
  • Wei, F. and Zhu, H. (2012). Group coordinate descent algorithms for nonconvex penalized regression, Computational Statistics and Data Analysis 56(2) 316–326.
  • Zhu, H., Brown, P. J. and Morris, J. S. (2011). Robust, adaptive functional regression in functional mixed model framework, Journal of the American Statistical Association–Theory and Methods 106(495) 1167–1179. 
  • Zhu, H., Vannucci, M. and Cox, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors, Biometrics 66 463–473.
Hongxiao Zhu

Associate Professor

403-H Hutcheson Hall 
250 Drillfield Drive 
Blacksburg, VA 24061